Rabbit Anti-Mouse Lyve-1
Slide this table
Cat-Nr. | 103-PA50S |
Size | 100 µg |
Price | 175 € |
Category | Polyclonal Antibody |
Clone Nr. | Rabbit IgG |
Species Reactivity | Mouse |
Formulation | lyophilized |
Buffer | PBS |
Reconstitution | Centrifuge vial prior to opening. Reconstitute in sterile water to a concentration of 0.1-1.0 mg/ml. |
Stability and Storage | The lyophilized antibody is stable for at least 2 years at -20°C. After sterile reconstitution the antibody is stable at 2-8°C for up to 6 months. Frozen aliquots are stable for at least 6 months when stored at -20°C. Addition of a carrier protein or 50% glycerol is recommended for frozen aliquots. |
Preparation | Produced from sera of rabbits immunized with highly pure recombinant mouse soluble LYVE-1 produced in insect cells. The recombinant soluble LYVE-1 consists of amino acid 24 (Ala) to 228 (Gly) and is fused to a C-terminal His-tag (6xHis). |
Antigen | Recombinant mouse soluble Lyve-1 (RT#S01-026) |
Application | WB, IHC (C), IF, FC |
Synonyms | Lyve1; Xlkd1; Lyve-1; Crsbp-1; 1200012G08Rik |
Description | LYVE-1 has been identified as a major receptor for HA (extracellular matrix glycosaminoglycan hyaluronan) on the lymph vessel wall. The deduced amino acid sequence of LYVE-1 predicts a 322-residue type I integral membrane polypeptide 41% similar to the CD44 HA receptor with a 212-residue extracellular domain containing a single Link module the prototypic HA binding domain of the Link protein superfamily. Like CD44, the LYVE-1 molecule binds both soluble and immobilized HA. However, unlike CD44, the LYVE-1 molecule colocalizes with HA on the luminal face of the lymph vessel wall and is completely absent from blood vessels. Hence, LYVE-1 is the first lymph-specific HA receptor to be characterized and is a uniquely powerful marker for lymph vessels themselves. |
Uniprot ID | Q8BHC0 |
Protein RefSeq | NP_444477 |
mRNA RefSeq | NM_053247 |
Figures
Cryo sections of mouse colon carcinoma labeled with rabbit polyclonal antibody against mouse LYVE-1 (red) [Cat# 103-PA50] and human CD31 (green). A: CD31; B: LYVE-1; C: CD31/LYVE-1
The experiments were performed by Dr. Ulrike Fiedler and Stefanie Koidel, Dept. of Vascular Biology and Angiogenesis Research Tumor Biology Center, Breisacher Str. 117, D-79106 Freiburg, Germany
Immunohistochemistry with paraffin-embedded sections of mouse intestine using a polyclonal rabbit anti-mouse [Cat# 103-PA50] LYVE-1 antibody. You see the staining (red) of lymphatic endothelial cells of the intestine.
The experiments has been performed by Dr. Karsten Debel, DCS, Hamburg, Germany.
Rat cardiac lymphatic microvessels, labeled with an antibody against rat Podoplanin [Cat# 104-M40] (left panel) and a antibody against mouse LYVE-1 (right panel). Image was obtained at 20x magnification on a Zeiss fluorescence microscope. Scale bar = 50 μm. The used protocol in short was: 1. Blockage of nonspecific binding; 2. Incubation with primary abs : anti-mouse Lyve1 (1:1000) / mouse anti-Podoplanin (1:400) for 60 min at RT; 3. Incubation with secondary abs: Donkey anti-rabbit Cy3 and Donkey anti-mouse FITC, 30 min at RT; 4. Mounting in DAPI-containing medium for cell nuclei labeling.
The experiments were performed by the research group of Prof. Dr. E. Brakenhielm – Rouen University (see also: Henri O et al., Circulation, March 2016).

LYVE1/CD31 staining on frozen sections of the mouse prostate.
The experiments were performed by Scott Gerber & Edith Lord, PhD, University of Rochester, USA

Western Analysis of anti-mouse LYVE-1. Sample was loaded in 15% SDS-polyacrylamide gel under reducing conditions.
Reference
- Liver type 1 innate lymphoid cells lacking IL-7 receptor are a native killer cell subset fostered by parenchymal niches. T. Asahi et al., eLife. 2023; 12: e84209.
- Heterogeneity and developmental dynamics of LYVE-1 perivascular macrophages distribution in the mouse brain. M. Karam et al., J Cereb Blood Flow Metab. 2022 Oct; 42(10): 1797–1812.
- 1270 nm near-infrared light as a novel vaccine adjuvant acts on mitochondrial photoreception in intradermal vaccines. Y. Maki et al., Front Immunol. 2022; 13: 1028733.
- Volumetric imaging reveals VEGF-C-dependent formation of hepatic lymph vessels in mice. S. Bobe et al., Front Cell Dev Biol. 2022; 10: 949896.
- Multitier mechanics control stromal adaptations in the swelling lymph node. F. P. Assen et al., Nat Immunol. 2022; 23(8): 1246–1255.
- Apelin promotes blood and lymph vessel formation and the growth of melanoma lung metastasis. J. Berta et al., Sci Rep. 2021; 11: 5798.
- Fibroblast-derived IL-33 is dispensable for lymph node homeostasis but critical for CD8 T-cell responses to acute and chronic viral infection. P. Aparicio-Domingo et al., European Journal of Immunology Volume 51, Issue 1.
- Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction. Houssari M. et al., Arterioscler Thromb Vasc Biol. 2020 May 14:ATVBAHA120314370.
- A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature. M. Xiang et al., Front Cardiovasc Med. 2020; 7: 52.
- Fenestral diaphragms and PLVAP associations in liver sinusoidal endothelial cells are developmentally regulated. Auvinen K. et al., Sci Rep. 2019 Oct 30;9(1):15698.
- Paraxial Mesoderm Is the Major Source of Lymphatic Endothelium. O.A. Stone and D.Y.R. Stainier, Dev Cell. 2019 Jul 22; 50(2): 247–255.e3.
- Attenuation of chronic antiviral T-cell responses through constitutive COX2-dependent prostanoid synthesis by lymph node fibroblasts. Schaeuble K. et al., PLoS Biol. 2019 Jul; 17(7): e3000072.
- Transmembrane protein 215 promotes angiogenesis by maintaining endothelial cell survival. Liu Y. et al., J Cell Physiol. 2019 Jun; 234(6): 9525–9534.
- Non-canonical WNT-signaling controls differentiation of lymphatics and extension lymphangiogenesis via RAC and JNK signaling. Lutze G. et al., Sci Rep. 2019 Mar 18;9(1):4739.
- IFNγ-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. Lane RS et al., J Exp Med. 2018 Dec 3; 215(12): 3057–3074.
- Brief Exposure of Skin to Near-Infrared Laser Modulates Mast Cell Function and Augments the Immune Response. Y. Kimizuka et al., J Immunol. 2018 Dec 15;201(12):3587-3603.
- Downregulation of VEGFR3 signaling alters cardiac lymphatic vessel organization and leads to a higher mortality after acute myocardial infarction. Vuorio T et al., Sci Rep. 2018 Nov 12;8(1):16709.
- Characterization of a B16-F10 melanoma model locally implanted into the ear pinnae of C57BL/6 mice. Potez M. et al., PLoS One. 2018 Nov 5;13(11):e0206693.
- Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and β1-integrin activation. Pekkonen P. et al, Elife. 2018 May 1;7. pii: e32490.
- HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development. Gauvrit S. et al., Nat Commun. 2018 Jul 13;9(1):2704.
- PECAM/eGFP transgenic mice for monitoring of angiogenesis in health and disease. Winkler F. et al., Sci Rep. 2018 Dec 4;8(1):17582.
- Absence of MHC-II expression by lymph node stromal cells results in autoimmunity. Dubrot J. et al., Life Sci Alliance. 2018 Dec 17;1(6):e201800164.
- T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. T. Manzo et al., Cancer Res January 31 2017 77 (3) 658-671.
- TGFβ counteracts LYVE-1-mediated induction of lymphangiogenesis by small hyaluronan oligosaccharides. Bauer J et al., J Mol Med (Berl). 2018 Feb;96(2):199-209.
- Interactions between fibroblastic reticular cells and B cells promote mesenteric lymph node lymphangiogenesis. L. K. Dubey et al., Nat Commun. 2017; 8: 367.
- YAP determines the cell fate of injured mouse hepatocytes in vivo. N. Miyamura et al., Nat Commun. 2017; 8: 16017.
- Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. O. Barreiro et al., eLife. 2016; 5: e15251.
- Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. P.-S. Koch et al., Blood. 2017 Jan 26; 129(4): 415–419.
- Selective Stimulation of Cardiac Lymphangiogenesis Reduces Myocardial Edema and Fibrosis Leading to Improved Cardiac Function Following Myocardial Infarction. O. Henri et al., Circulation. 2016 Apr 12;133(15):1484-97.
- Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: a regulatory role for soluble VEGF receptor 2. M. Taher et al., FASEB J. 2016 Jul; 30(7): 2490–2499.
- Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Rantakari P et al., Nature. 2016 Oct 20;538(7625):392-396.
- Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic. I. Iftakhar-E-Khuda et al., Proc Natl Acad Sci U S A. 2016 Sep 20; 113(38): 10643–10648.
- Medicinal facilities to B16F10 melanoma cells for distant metastasis control with a supramolecular complex by DEAE-dextran-MMA copolymer/paclitaxel. Eshita Y. et al., Drug Deliv Transl Res. 2015 Feb;5(1):38-50.
- A Novel Treatment Method for Lymph Node Metastasis Using a Lymphatic Drug Delivery System with Nano/Microbubbles and Ultrasound. Shigeki Kato et al., J Cancer. 2015; 6(12): 1282–1294.
- The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Rantakari P et al., Nat Immunol. 2015 Apr;16(4):386-96.
- Clonal analysis identifies hemogenic endothelium as the source of the blood-endothelial common lineage in the mouse embryo. L. Padrón-Barthe et al., Blood. 2014 Oct 16; 124(16): 2523–2532.
- An Inducible Hepatocellular Carcinoma Model for Preclinical Evaluation of Antiangiogenic Therapy in Adult Mice. A. Runge et al., Cancer Res. 2014 Aug 1;74(15):4157-69.
- Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. M. Augsten et al., Cancer Res. 2014 Jun 1;74(11):2999-3010.
- The effect of podoplanin inhibition on lymphangiogenesis under pathological conditions. Maruyama Y. et al., Invest Ophthalmol Vis Sci. 2014 Jul 1;55(8):4813-22.
- Steady-State Antigen Scavenging, Cross-Presentation, and CD8+ T Cell Priming: A New Role for Lymphatic Endothelial Cells. S. Hirosue et al., J Immunol. 2014 Jun 1; 192(11): 5002–5011.
- Apelin promotes lymphangiogenesis and lymph node metastasis. J. Berta et al., Oncotarget. 2014 Jun; 5(12): 4426–4437.
- Tumor-Derived Interleukin-1 Promotes Lymphangiogenesis and Lymph Node Metastasis through M2-Type Macrophages. Kosuke Watari et al., PLoS One. 2014; 9(6): e99568.
- Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. W. W. Kilarski et al., Angiogenesis. 2014; 17(2): 347–357.
- Inhibition of VEGFR-3 activation in tumor-draining lymph nodes suppresses the outgrowth of lymph node metastases in the MT-450 syngeneic rat breast cancer model. Quagliata L. et al., Clin Exp Metastasis. 2014 Mar;31(3):351-65.
- TGFβ signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin. J. M. James et al., Development. 2013 Sep 15; 140(18): 3903–3914.
- A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. R. Hägerling et al., EMBO J. 2013 Mar 6; 32(5): 629–644.
- Lymphatic drainage pathways from the cervix uteri: implications for radical hysterectomy? Kraima AC et al., Gynecol Oncol. 2014 Jan;132(1):107-13.
- Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. H. Wiig et al., J Clin Invest. 2013 Jul 1; 123(7): 2803–2815.
- Intravital Immunofluorescence for Visualizing the Microcirculatory and Immune Microenvironments in the Mouse Ear Dermis. W. W. Kilarski et al., PLoS One. 2013; 8(2): e57135.
- VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Lund AW et al., Cell Rep. 2012 Mar 29;1(3):191-9.
- Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. S. Lutter et al., J Cell Biol. 2012 Jun 11; 197(6): 837–849.
- miRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection. S. Zuklys et al., J Immunol. 2012 Oct 15;189(8): 3894–3904.
- Specific Inhibition of SRC Kinase Impairs Malignant Glioma Growth In Vitro and In Vivo. H. Stedt et al., Mol Ther Nucleic Acids. 2012 May; 1(5): e19.
- Downregulation of VEGF-C expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via multiple mechanisms. Khromova N et al., Oncogene. 2012 Mar 15;31(11):1389-97.
- Association of T-zone reticular networks and conduits with ectopic lymphoid tissues in mice and humans. Link A et al., Am J Pathol. 2011 Apr;178(4):1662-75.
- Different role of CD73 in leukocyte trafficking via blood and lymph vessels. Ålgars A et al., Blood. 2011 Apr 21;117(16):4387-93.
- Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Yuji Okuno et al., Blood. 2011 May 12; 117(19): 5264–5272.
- Cotargeting of VEGFR-1 and -3 and angiopoietin receptor Tie2 reduces the growth of solid human ovarian cancer in mice. Sallinen H et al., Cancer Gene Ther. 2011 Feb;18(2):100-9.
- Platelets play an essential role in separating the blood and lymphatic vasculatures during embryonic angiogenesis. L. Carramolino et al., Circ Res. 2010 Apr 16;106(7):1197-201.
- Integrin-α9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. E. Bazigou et al., Dev Cell. 2009 Aug; 17-2: 175–186.
- Modulating metastasis by a lymphangiogenic switch in prostate cancer. E. Brakenhielm et al., Int J Cancer. 2007 Nov 15; 121(10): 2153–2161.
- Essential in Vivo Roles of the C-type Lectin Receptor CLEC-2: EMBRYONIC/NEONATAL LETHALITY OF CLEC-2-DEFICIENT MICE BY BLOOD/LYMPHATIC MISCONNECTIONS AND IMPAIRED THROMBUS FORMATION OF CLEC-2-DEFICIENT PLATELETS. K. Suzuki-Inoue et al., J Biol Chem. 2010 Aug 6; 285(32): 24494–24507.
- Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. Hassane S. et al., Lab Invest. 2011 Jan;91(1):24-32.
- Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. S. J. Priceman et al., Blood. 2010 Feb 18; 115(7): 1461–1471.
- Endothelin-1 stimulates lymphatic endothelial cells and lymphatic vessels to grow and invade. F. Spinella et al., Cancer Res. 2009 Mar 15;69(6):2669-76.
- Suppression of Prostate Cancer Nodal and Systemic Metastasis by Blockade of the Lymphangiogenic Axis. J. B. Burton et al., Cancer Res. 2008 Oct 1; 68(19): 7828–7837.
- M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. Yoshiaki Kubota et al., J Exp Med. 2009 May 11; 206(5): 1089–1102.
- Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. Tomei AA et al., J Immunol. 2009 Oct 1;183(7):4273-83.
- Myeloid Cells Contribute to Tumor Lymphangiogenesis. A. Zumsteg et al., PLoS One. 2009; 4(9): e7067.
- Vascular endothelial growth factor-D transgenic mice show enhanced blood capillary density, improved postischemic muscle regeneration, and increased susceptibility to tumor formation. Kärkkäinen AM et al., Blood. 2009 Apr 30;113(18):4468-75.
- Atu027, a Liposomal Small Interfering RNA Formulation Targeting Protein Kinase N3, Inhibits Cancer Progression. M. Aleku et al., Cancer Res. 2008 Dec 1;68(23):9788-98.
- Antiangiogenic Gene Therapy With Soluble VEGFR-1, -2, and -3 Reduces the Growth of Solid Human Ovarian Carcinoma in Mice. H. Sallinen et al., Mol Ther. 2009 Feb; 17(2): 278–284.
- Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. J. B. Burton et al., Nat Med. 2008 Aug; 14(8):882–888.
- Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Niessen F. et al., Nature. 2008 Apr 3;452(7187):654-8.
All prices plus VAT + possible delivery charges