Rabbit Anti-Mouse Lyve-1

Slide this table

Cat-Nr.103-PA50AG
Size50 µg
Price210 €
CategoryPolyclonal Antibody
Clone Nr.Rabbit IG
Species ReactivityMouse
Formulationlyophilized
BufferPBS
ReconstitutionCentrifuge vial prior to opening. Reconstitute in sterile water to a concentration of 0.1-1.0 mg/ml.
Stability and StorageThe lyophilized antibody is stable at room temperature for up to 1 month. The reconstituted antibody is stable for at least two weeks at 2-8 °C. Frozen aliquots are stable for at least 6 months when stored at -20 °C.
PreparationProduced from sera of rabbits immunized with highly pure recombinant mouse soluble LYVE-1 produced in insect cells. The recombinant soluble LYVE-1 consists of amino acid 24 (Ala) to 228 (Gly) and is fused to a C-terminal His-tag (6xHis).
AntigenRecombinant mouse soluble Lyve-1 (RT#S01-026)
ApplicationWB, IHC (C), IF, FC
SynonymsLyve1; Xlkd1; Lyve-1; Crsbp-1; 1200012G08Rik
DescriptionLYVE-1 has been identified as a major receptor for HA (extracellular matrix glycosaminoglycan hyaluronan) on the lymph vessel wall. The deduced amino acid sequence of LYVE-1 predicts a 322-residue type I integral membrane polypeptide 41% similar to the CD44 HA receptor with a 212-residue extracellular domain containing a single Link module the prototypic HA binding domain of the Link protein superfamily. Like CD44, the LYVE-1 molecule binds both soluble and immobilized HA. However, unlike CD44, the LYVE-1 molecule colocalizes with HA on the luminal face of the lymph vessel wall and is completely absent from blood vessels. Hence, LYVE-1 is the first lymph-specific HA receptor to be characterized and is a uniquely powerful marker for lymph vessels themselves.
Uniprot IDQ8BHC0
Protein RefSeqNP_444477
mRNA RefSeqNM_053247

Figures


Reference

  1. Absence of MHC-II expression by lymph node stromal cells results in autoimmunity. Dubrot J. et al., Life Sci Alliance. 2018 Dec 17;1(6):e201800164.
  2. PECAM/eGFP transgenic mice for monitoring of angiogenesis in health and disease. Winkler F. et al., Sci Rep. 2018 Dec 4;8(1):17582.
  3. Downregulation of VEGFR3 signaling alters cardiac lymphatic vessel organization and leads to a higher mortality after acute myocardial infarction. Vuorio T. et al., Sci Rep. 2018 Nov 12;8(1):16709.
  4. Characterization of a B16-F10 melanoma model locally implanted into the ear pinnae of C57BL/6 mice. Potez M. et al., PLoS One. 2018 Nov 5;13(11):e0206693.
  5. Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and β1-integrin activation. Pekkonen P. et al., Elife. 2018 May 1;7. pii: e32490.
  6. Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Y. Zhang et al., Nat Commun. 2018; 9: 1296.
  7. Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program. M. Frye et al., Nat Commun. 2018 Apr 17;9(1):1511.
  8. PROX1 is a transcriptional regulator of MMP14. Gramolelli S. et al., Sci Rep. 2018 Jun 22;8(1):9531.
  9. T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. T. Manzo et al., Cancer Res January 31 2017 77 (3) 658-671
  10. Placental growth factor-1 attenuates vascular endothelial growth factor-A-dependent tumor angiogenesis during beta cell carcinogenesis. T. Schomber et al., Cancer Res. 2007 Nov 15;67(22):10840-8
  11. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. A. T. Boutin et al., Genes Dev. 2017 Feb 15; 31(4): 370–382.
  12. Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. O. Barreiro et al., eLife. 2016; 5: e15251.
  13. Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. P.-S. Koch et al., Blood. 2017 Jan 26; 129(4): 415–419.
  14. The lymphatic vascular system of the mouse head. M. Lohrberg and J. Wilting, Cell Tissue Res. 2016; 366(3): 667–677.
  15. Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: a regulatory role for soluble VEGF receptor 2. M. Taher et al., FASEB J. 2016 Jul; 30(7): 2490–2499.
  16. EPHB4 kinase–inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. S. Martin-Almedina et al., J Clin Invest. 2016 Aug 1; 126(8): 3080–3088.
  17. Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic. I. Iftakhar-E-Khuda et al., Proc Natl Acad Sci U S A. 2016 Sep 20; 113(38): 10643–10648.
  18. Medicinal facilities to B16F10 melanoma cells for distant metastasis control with a supramolecular complex by DEAE-dextran-MMA copolymer/paclitaxel. Eshita Y. et al., Drug Deliv Transl Res. 2015 Feb;5(1):38-50.
  19. A Novel Treatment Method for Lymph Node Metastasis Using a Lymphatic Drug Delivery System with Nano/Microbubbles and Ultrasound. Shigeki Kato et al., J Cancer. 2015; 6(12): 1282–1294.
  20. An Inducible Hepatocellular Carcinoma Model for Preclinical Evaluation of Antiangiogenic Therapy in Adult Mice. A. Runge et al., Cancer Res. 2014 Aug 1;74(15):4157-69
  21. Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. M. Augsten et al., Cancer Res. 2014 Jun 1;74(11):2999-3010
  22. The effect of podoplanin inhibition on lymphangiogenesis under pathological conditions. Maruyama Y et al., Invest Ophthalmol Vis Sci. 2014 Jul 1;55(8):4813-22.
  23. Angiopoietin-1 is regulated by miR-204 and contributes to corneal neovascularization in KLEIP-deficient mice. Kather JN et al., Invest Ophthalmol Vis Sci. 2014 Jun 10;55(7):4295-303.
  24. Endothelial, but not smooth muscle, peroxisome proliferator-activated receptor β/δ regulates vascular permeability and anaphylaxis. Wawrzyniak M et al., J Allergy Clin Immunol. 2015 Jun;135(6):1625-35.e5. Epub 2014 Dec 31.
  25. Steady-State Antigen Scavenging, Cross-Presentation, and CD8+ T Cell Priming: A New Role for Lymphatic Endothelial Cells. S. Hirosue et al., J Immunol. 2014 Jun 1; 192(11): 5002–5011.
  26. Apelin promotes lymphangiogenesis and lymph node metastasis. J. Berta et al., Oncotarget. 2014 Jun; 5(12): 4426–4437.
  27. Tumor-Derived Interleukin-1 Promotes Lymphangiogenesis and Lymph Node Metastasis through M2-Type Macrophages. Kosuke Watari et al., PLoS One. 2014; 9(6): e99568.
  28. Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. W. W. Kilarski et al., Angiogenesis. 2014; 17(2): 347–357.
  29. Inhibition of VEGFR-3 activation in tumor-draining lymph nodes suppresses the outgrowth of lymph node metastases in the MT-450 syngeneic rat breast cancer model. Quagliata L. et al., Clin Exp Metastasis. 2014 Mar;31(3):351-65.
  30. TGFβ signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin. J. M. James et al., Development. 2013 Sep 15; 140(18): 3903–3914.
  31. Lymphatic drainage pathways from the cervix uteri: implications for radical hysterectomy? Kraima AC et al., Gynecol Oncol. 2014 Jan;132(1):107-13.
  32. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. H. Wiig et al., J Clin Invest. 2013 Jul 1; 123(7): 2803–2815.
  33. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Lund AW et al., Cell Rep. 2012 Mar 29;1(3):191-9.
  34. Discontinuous LYVE-1 expression in corneal limbal lymphatics: dual function as microvalves and immunological hot spots. S. Nakao et al., FASEB J. 2012 Feb; 26(2): 808–817.
  35. Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. S. Lutter et al., J Cell Biol. 2012 Jun 11; 197(6): 837–849.
  36. miRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection. S. Zuklys et al., J Immunol. 2012 Oct 15;189(8): 3894–3904.
  37. Specific Inhibition of SRC Kinase Impairs Malignant Glioma Growth In Vitro and In Vivo. H. Stedt et al., Mol Ther Nucleic Acids. 2012 May; 1(5): e19.
  38. VAP-1–Mediated M2 Macrophage Infiltration Underlies IL-1β– but Not VEGF-A–Induced Lymph- and Angiogenesis. S. Nakao et al., Am J Pathol. 2011 Apr; 178(4): 1913–1921.
  39. Different role of CD73 in leukocyte trafficking via blood and lymph vessels. Ålgars A et al., Blood. 2011 Apr 21;117(16):4387-93.
  40. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Yuji Okuno et al., Blood. 2011 May 12; 117(19): 5264–5272.
  41. Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: an endogenous trapping mechanism links lymph- and angiogenesis. S. Nakao et al., Blood. 2011 Jan 20; 117(3): 1081–1090.
  42. Cotargeting of VEGFR-1 and -3 and angiopoietin receptor Tie2 reduces the growth of solid human ovarian cancer in mice. H. Sallinen et al., Cancer Gene Ther. 2011 Feb;18(2):100-9.
  43. Integrin-α9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. E. Bazigou et al., Dev Cell. 2009 Aug; 17-2: 175–186.
  44. Lymphangiogenesis and angiogenesis: concurrence and/or dependence? Studies in inbred mouse strains. S. Nakao et al., FASEB J. 2010 Feb; 24(2): 504–513.
  45. Modulating metastasis by a lymphangiogenic switch in prostate cancer. E. Brakenhielm et al., Int J Cancer. 2007 Nov 15; 121(10): 2153–2161.
  46. Essential in Vivo Roles of the C-type Lectin Receptor CLEC-2: EMBRYONIC/NEONATAL LETHALITY OF CLEC-2-DEFICIENT MICE BY BLOOD/LYMPHATIC MISCONNECTIONS AND IMPAIRED THROMBUS FORMATION OF CLEC-2-DEFICIENT PLATELETS. Katsue Suzuki-Inoue et al., J Biol Chem. 2010 Aug 6; 285(32): 24494–24507.
  47. Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. S. Hassane et al., Lab Invest. 2011 Jan;91(1):24-32.
  48. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. S. J. Priceman et al., Blood. 2010 Feb 18; 115(7): 1461–1471.
  49. Effects of VEGFR-3 phosphorylation inhibitor on lymph node metastasis in an orthotopic diffuse-type gastric carcinoma model. M. Yashiro et al.,    Br J Cancer. 2009 Oct 6; 101(7): 1100–1106.
  50. Endothelin-1 stimulates lymphatic endothelial cells and lymphatic vessels to grow and invade. F. Spinella et al., Cancer Res. 2009 Mar 15;69(6):2669-76
  51. Suppression of Prostate Cancer Nodal and Systemic Metastasis by Blockade of the Lymphangiogenic Axis. J. B. Burton et al., Cancer Res. 2008 Oct 1; 68(19): 7828–7837.
  52. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. Yoshiaki Kubota et al., J Exp Med. 2009 May 11; 206(5): 1089–1102.
  53. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. A.A. Tomei et al., J Immunol. 2009 Oct 1;183(7):4273-83.
  54. Vascular endothelial growth factor-D transgenic mice show enhanced blood capillary density, improved postischemic muscle regeneration, and increased susceptibility to tumor formation. A.M. Kärkkäinen et al., Blood. 2009 Apr 30;113(18):4468-75.
  55. Atu027, a Liposomal Small Interfering RNA Formulation Targeting Protein Kinase N3, Inhibits Cancer Progression. M. Aleku et al., Cancer Res. 2008 Dec 1;68(23):9788-98
  56. Antiangiogenic Gene Therapy With Soluble VEGFR-1, -2, and -3 Reduces the Growth of Solid Human Ovarian Carcinoma in Mice. H. Sallinen et al., Mol Ther. 2009 Feb; 17(2): 278–284.
  57. Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. J. B. Burton et al., Nat Med. 2008 Aug; 14(8):882–888.
  58. Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. F. Niessen et al., Nature. 2008 Apr 3;452(7187):654-8.

All prices plus VAT + possible delivery charges