Rabbit Anti-Mouse Lyve-1
Slide this table
Cat-Nr. | 103-PA50AG |
Size | 50 µg |
Price | 220 € |
Category | Polyclonal Antibody |
Clone Nr. | Rabbit IgG |
Species Reactivity | Mouse |
Formulation | lyophilized |
Buffer | PBS |
Reconstitution | Centrifuge vial prior to opening. Reconstitute in sterile water to a concentration of 0.1-1.0 mg/ml. |
Stability and Storage | The lyophilized antibody is stable for at least 2 years at -20°C. After sterile reconstitution the antibody is stable at 2-8°C for up to 6 months. Frozen aliquots are stable for at least 6 months when stored at -20°C. Addition of a carrier protein or 50% glycerol is recommended for frozen aliquots. |
Preparation | Produced from sera of rabbits immunized with highly pure recombinant mouse soluble LYVE-1 produced in insect cells. The recombinant soluble LYVE-1 consists of amino acid 24 (Ala) to 228 (Gly) and is fused to a C-terminal His-tag (6xHis). |
Antigen | Recombinant mouse soluble Lyve-1 (RT#S01-026) |
Application | WB, IHC (C), IF, FC |
Synonyms | Lyve1; Xlkd1; Lyve-1; Crsbp-1; 1200012G08Rik |
Description | LYVE-1 has been identified as a major receptor for HA (extracellular matrix glycosaminoglycan hyaluronan) on the lymph vessel wall. The deduced amino acid sequence of LYVE-1 predicts a 322-residue type I integral membrane polypeptide 41% similar to the CD44 HA receptor with a 212-residue extracellular domain containing a single Link module the prototypic HA binding domain of the Link protein superfamily. Like CD44, the LYVE-1 molecule binds both soluble and immobilized HA. However, unlike CD44, the LYVE-1 molecule colocalizes with HA on the luminal face of the lymph vessel wall and is completely absent from blood vessels. Hence, LYVE-1 is the first lymph-specific HA receptor to be characterized and is a uniquely powerful marker for lymph vessels themselves. |
Uniprot ID | Q8BHC0 |
Protein RefSeq | NP_444477 |
mRNA RefSeq | NM_053247 |
Figures

Immunohistochemistry with paraffin-embedded sections of mouse intestine using a polyclonal rabbit anti-mouse [Cat# 103-PA50AG] LYVE-1 antibody. You see the staining (red) of lymphatic endothelial cells of the intestine.
The experiment was performed by Dr. Karsten Debel, DCS, Hamburg, Germany.

Immunohistochemical analysis of a healthy mouse heart using ReliaTech's rabbit anti-mouse LYVE-1 antibody [Cat# 103-PA50AG]. Heart was labeled with polyclonal rabbit anti-mouse LYVE-1 (1:500 dilution (corresponds 0.4 μg/ml)) followed by 1:400 dilution of a Cy5-conjugated donkey anti-rabbit secondary antibody (Jackson). Extensive washing was performed to remove nonspecific binding. Hearts were clarified using a modified iDISCO+ protocol as described in "Arterioscler Thromb Vasc Biol. 2020 May 14:ATVBAHA120314370. doi: 10.1161/ATVBAHA.120.314370.“ Evaluation by lightsheet microscopy (ultramicroscope II, x0.8, scale bar 1 mm) of a whole mount-stained mouse heart reveals a dense lymphatic network (Lyve1, blue) on the epicardial surface.
The experiment was performed by the research group of Dr. Hab. Ebba Brakenhielm, Inserm U1096 EnVI Laboratory, Medical Faculty of Rouen University, and David Godefroy, Inserm U1245 (DC2N Laboratory), Mont Saint Aignan, France.


Rat cardiac lymphatic microvessels labeled with antibodies against mouse LYVE-1 (red), and adjacent blood vessels, labeled with antibodies against CD31 (green). Nuclear stain in blue. Scale bar = 50 µm.
Note: The anti-mouse Lyve-1 polyclonal antibody (Cat# 103-PA50AG) shows a strong cross reaction with rat LYVE-1 protein.
The experiment was performed by the research group INSERM U1096 in Rouen, France directed by Dr Vincent Richard.

Staining of CD31 (blood vessel - green) showing capillary structures and visualized using whole mount histology. Overlaid staining for LYVE-1 (lympatic vessel - red) using a polyclonal rabbit anti-mouse LYVE-1 antibody [Cat# 103-PA50AG].
The experiments were performed by Scott Gerber & Edith Lord, PhD, University of Rochester, USA


Immunofluorescence staining (red) of cryo-sections of mouse skin day 17.5) (upper panel) and human foreskin (lower panel) with anti-mouse LYVE-1 (5µg/ml) [Cat# 103-PA50AG] and counter staining of nuclei with Dapi (blue).
The experiments were performed by the research group of Prof. Dr. J. Wilting and Dr. K. Buttler, University Göttingen, Germany.

FACS analysis with primary mouse lung microvascular endothelial cells (MLMEC).
Reference
- Dietary Fat Composition Affects Hepatic Angiogenesis and Lymphangiogenesis in Hepatitis C Virus Core Gene Transgenic Mice. P. Diao et al., Liver Cancer. 2023 Feb; 12(1): 57–71.
- 1270 nm near-infrared light as a novel vaccine adjuvant acts on mitochondrial photoreception in intradermal vaccines. Y. Maki et al., Front Immunol. 2022; 13: 1028733.
- Volumetric imaging reveals VEGF-C-dependent formation of hepatic lymph vessels in mice. S. Bobe et al., Front Cell Dev Biol. 2022; 10: 949896.
- Multitier mechanics control stromal adaptations in the swelling lymph node. F. P. Assen et al., Nat Immunol. 2022; 23(8): 1246–1255.
- Malignant pleural mesothelioma nodules remodel their surroundings to vascularize and grow. I. Kovacs et al., Transl Lung Cancer Res. 2022 Jun; 11(6): 991–1008.
- Tongue immune compartment analysis reveals spatial macrophage heterogeneity. E. M. Lyras et al., eLife. 2022; 11: e77490.
- Caspase‐8 in endothelial cells maintains gut homeostasis and prevents small bowel inflammation in mice. N. Tisch et al., EMBO Mol Med. 2022 Jun; 14(6): e14121.
- Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. A. S. Mirchandani et al., Nat Immunol. 2022; 23(6): 927–939.
- An inducible Cldn11-CreERT2 mouse line for selective targeting of lymphatic valves. H. Ortsäter et al., genesis Volume 59, Issue 7-8
- Modeling high-grade serous ovarian carcinoma using a combination of in vivo fallopian tube electroporation and CRISPR-Cas9-mediated genome editing. K. Teng et al., Cancer Res. 2021 Jul 23; canres.1518.2020.
- The Therapeutic Effect of Second Near-Infrared Absorbing Gold Nanorods on Metastatic Lymph Nodes via Lymphatic Delivery System. A. O. Oladipo et al., Pharmaceutics. 2021 Sep; 13(9): 1359.
- Canonical NF-κB signaling maintains corneal epithelial integrity and prevents corneal aging via retinoic acid. Qian Yu et al., eLife. 2021; 10: e67315.
- Study of the physicochemical properties of drugs suitable for administration using a lymphatic drug delivery system. R. Fukumura et al., Cancer Sci. 2021 May; 112(5): 1735–1745.
- Apelin promotes blood and lymph vessel formation and the growth of melanoma lung metastasis. J. Berta et al., Sci Rep. 2021; 11: 5798.
- Blood and lymphatic systems are segregated by the FLCN tumor suppressor. Ikue Tai-Nagara et al., Nat Commun. 2020; 11: 6314.
- Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction. M. Houssari et al., Arterioscler Thromb Vasc Biol. 2020 May 14;ATVBAHA120314370.
- Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. E. Engelbrecht et al., eLife. 2020; 9: e52690.
- Tamoxifen-independent recombination of reporter genes limits lineage tracing and mosaic analysis using CreERT2 lines. A. Álvarez-Aznar et al., Transgenic Res. 2020; 29(1): 53–68.
- Embryonic FAP+ lymphoid tissue organizer cells generate the reticular network of adult lymph nodes. Denton AE et al., Cells. 2019 Sep 6;8(9).
- Transmembrane protein 215 promotes angiogenesis by maintaining endothelial cell survival. Liu Y. et al., J Cell Physiol. 2019 Jun; 234(6): 9525–9534.
- Non-canonical WNT-signaling controls differentiation of lymphatics and extension lymphangiogenesis via RAC and JNK signaling. Lutze G. et al., Sci Rep. 2019 Mar 18;9(1):4739.
- Absence of MHC-II expression by lymph node stromal cells results in autoimmunity. Dubrot J. et al., Life Sci Alliance. 2018 Dec 17;1(6):e201800164.
- PECAM/eGFP transgenic mice for monitoring of angiogenesis in health and disease. Winkler F. et al., Sci Rep. 2018 Dec 4;8(1):17582.
- Brief Exposure of Skin to Near-Infrared Laser Modulates Mast Cell Function and Augments the Immune Response. Y. Kimizuka et al., J Immunol. 2018 Dec 15;201(12):3587-3603.
- Downregulation of VEGFR3 signaling alters cardiac lymphatic vessel organization and leads to a higher mortality after acute myocardial infarction. Vuorio T. et al., Sci Rep. 2018 Nov 12;8(1):16709.
- Characterization of a B16-F10 melanoma model locally implanted into the ear pinnae of C57BL/6 mice. Potez M. et al., PLoS One. 2018 Nov 5;13(11):e0206693.
- Endothelial cell fitness dictates the source of regenerating liver vasculature. Singhal M. et al., J Exp Med. 2018 Oct 1;215(10):2497-2508.
- Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and β1-integrin activation. Pekkonen P. et al., Elife. 2018 May 1;7. pii: e32490.
- Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Y. Zhang et al., Nat Commun. 2018; 9: 1296.
- Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program. M. Frye et al., Nat Commun. 2018 Apr 17;9(1):1511.
- PROX1 is a transcriptional regulator of MMP14. Gramolelli S. et al., Sci Rep. 2018 Jun 22;8(1):9531.
- T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. T. Manzo et al., Cancer Res January 31 2017 77 (3) 658-671
- Placental growth factor-1 attenuates vascular endothelial growth factor-A-dependent tumor angiogenesis during beta cell carcinogenesis. T. Schomber et al., Cancer Res. 2007 Nov 15;67(22):10840-8
- Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. A. T. Boutin et al., Genes Dev. 2017 Feb 15; 31(4): 370–382.
- Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. O. Barreiro et al., eLife. 2016; 5: e15251.
- Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. P.-S. Koch et al., Blood. 2017 Jan 26; 129(4): 415–419.
- The lymphatic vascular system of the mouse head. M. Lohrberg and J. Wilting, Cell Tissue Res. 2016; 366(3): 667–677.
- Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: a regulatory role for soluble VEGF receptor 2. M. Taher et al., FASEB J. 2016 Jul; 30(7): 2490–2499.
- EPHB4 kinase–inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. S. Martin-Almedina et al., J Clin Invest. 2016 Aug 1; 126(8): 3080–3088.
- Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic. I. Iftakhar-E-Khuda et al., Proc Natl Acad Sci U S A. 2016 Sep 20; 113(38): 10643–10648.
- Medicinal facilities to B16F10 melanoma cells for distant metastasis control with a supramolecular complex by DEAE-dextran-MMA copolymer/paclitaxel. Eshita Y. et al., Drug Deliv Transl Res. 2015 Feb;5(1):38-50.
- A Novel Treatment Method for Lymph Node Metastasis Using a Lymphatic Drug Delivery System with Nano/Microbubbles and Ultrasound. Shigeki Kato et al., J Cancer. 2015; 6(12): 1282–1294.
- An Inducible Hepatocellular Carcinoma Model for Preclinical Evaluation of Antiangiogenic Therapy in Adult Mice. A. Runge et al., Cancer Res. 2014 Aug 1;74(15):4157-69
- Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. M. Augsten et al., Cancer Res. 2014 Jun 1;74(11):2999-3010
- The effect of podoplanin inhibition on lymphangiogenesis under pathological conditions. Maruyama Y et al., Invest Ophthalmol Vis Sci. 2014 Jul 1;55(8):4813-22.
- Angiopoietin-1 is regulated by miR-204 and contributes to corneal neovascularization in KLEIP-deficient mice. Kather JN et al., Invest Ophthalmol Vis Sci. 2014 Jun 10;55(7):4295-303.
- Endothelial, but not smooth muscle, peroxisome proliferator-activated receptor β/δ regulates vascular permeability and anaphylaxis. Wawrzyniak M et al., J Allergy Clin Immunol. 2015 Jun;135(6):1625-35.e5. Epub 2014 Dec 31.
- Steady-State Antigen Scavenging, Cross-Presentation, and CD8+ T Cell Priming: A New Role for Lymphatic Endothelial Cells. S. Hirosue et al., J Immunol. 2014 Jun 1; 192(11): 5002–5011.
- Apelin promotes lymphangiogenesis and lymph node metastasis. J. Berta et al., Oncotarget. 2014 Jun; 5(12): 4426–4437.
- Tumor-Derived Interleukin-1 Promotes Lymphangiogenesis and Lymph Node Metastasis through M2-Type Macrophages. Kosuke Watari et al., PLoS One. 2014; 9(6): e99568.
- Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. W. W. Kilarski et al., Angiogenesis. 2014; 17(2): 347–357.
- Inhibition of VEGFR-3 activation in tumor-draining lymph nodes suppresses the outgrowth of lymph node metastases in the MT-450 syngeneic rat breast cancer model. Quagliata L. et al., Clin Exp Metastasis. 2014 Mar;31(3):351-65.
- TGFβ signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin. J. M. James et al., Development. 2013 Sep 15; 140(18): 3903–3914.
- Lymphatic drainage pathways from the cervix uteri: implications for radical hysterectomy? Kraima AC et al., Gynecol Oncol. 2014 Jan;132(1):107-13.
- Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. H. Wiig et al., J Clin Invest. 2013 Jul 1; 123(7): 2803–2815.
- VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Lund AW et al., Cell Rep. 2012 Mar 29;1(3):191-9.
- Discontinuous LYVE-1 expression in corneal limbal lymphatics: dual function as microvalves and immunological hot spots. S. Nakao et al., FASEB J. 2012 Feb; 26(2): 808–817.
- Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. S. Lutter et al., J Cell Biol. 2012 Jun 11; 197(6): 837–849.
- miRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection. S. Zuklys et al., J Immunol. 2012 Oct 15;189(8): 3894–3904.
- Specific Inhibition of SRC Kinase Impairs Malignant Glioma Growth In Vitro and In Vivo. H. Stedt et al., Mol Ther Nucleic Acids. 2012 May; 1(5): e19.
- VAP-1–Mediated M2 Macrophage Infiltration Underlies IL-1β– but Not VEGF-A–Induced Lymph- and Angiogenesis. S. Nakao et al., Am J Pathol. 2011 Apr; 178(4): 1913–1921.
- Different role of CD73 in leukocyte trafficking via blood and lymph vessels. Ålgars A et al., Blood. 2011 Apr 21;117(16):4387-93.
- Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Yuji Okuno et al., Blood. 2011 May 12; 117(19): 5264–5272.
- Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: an endogenous trapping mechanism links lymph- and angiogenesis. S. Nakao et al., Blood. 2011 Jan 20; 117(3): 1081–1090.
- Cotargeting of VEGFR-1 and -3 and angiopoietin receptor Tie2 reduces the growth of solid human ovarian cancer in mice. H. Sallinen et al., Cancer Gene Ther. 2011 Feb;18(2):100-9.
- Integrin-α9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. E. Bazigou et al., Dev Cell. 2009 Aug; 17-2: 175–186.
- Lymphangiogenesis and angiogenesis: concurrence and/or dependence? Studies in inbred mouse strains. S. Nakao et al., FASEB J. 2010 Feb; 24(2): 504–513.
- Modulating metastasis by a lymphangiogenic switch in prostate cancer. E. Brakenhielm et al., Int J Cancer. 2007 Nov 15; 121(10): 2153–2161.
- Essential in Vivo Roles of the C-type Lectin Receptor CLEC-2: EMBRYONIC/NEONATAL LETHALITY OF CLEC-2-DEFICIENT MICE BY BLOOD/LYMPHATIC MISCONNECTIONS AND IMPAIRED THROMBUS FORMATION OF CLEC-2-DEFICIENT PLATELETS. Katsue Suzuki-Inoue et al., J Biol Chem. 2010 Aug 6; 285(32): 24494–24507.
- Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. S. Hassane et al., Lab Invest. 2011 Jan;91(1):24-32.
- Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. S. J. Priceman et al., Blood. 2010 Feb 18; 115(7): 1461–1471.
- Effects of VEGFR-3 phosphorylation inhibitor on lymph node metastasis in an orthotopic diffuse-type gastric carcinoma model. M. Yashiro et al., Br J Cancer. 2009 Oct 6; 101(7): 1100–1106.
- Endothelin-1 stimulates lymphatic endothelial cells and lymphatic vessels to grow and invade. F. Spinella et al., Cancer Res. 2009 Mar 15;69(6):2669-76
- Suppression of Prostate Cancer Nodal and Systemic Metastasis by Blockade of the Lymphangiogenic Axis. J. B. Burton et al., Cancer Res. 2008 Oct 1; 68(19): 7828–7837.
- M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. Yoshiaki Kubota et al., J Exp Med. 2009 May 11; 206(5): 1089–1102.
- Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. A.A. Tomei et al., J Immunol. 2009 Oct 1;183(7):4273-83.
- Vascular endothelial growth factor-D transgenic mice show enhanced blood capillary density, improved postischemic muscle regeneration, and increased susceptibility to tumor formation. A.M. Kärkkäinen et al., Blood. 2009 Apr 30;113(18):4468-75.
- Atu027, a Liposomal Small Interfering RNA Formulation Targeting Protein Kinase N3, Inhibits Cancer Progression. M. Aleku et al., Cancer Res. 2008 Dec 1;68(23):9788-98
- Antiangiogenic Gene Therapy With Soluble VEGFR-1, -2, and -3 Reduces the Growth of Solid Human Ovarian Carcinoma in Mice. H. Sallinen et al., Mol Ther. 2009 Feb; 17(2): 278–284.
- Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. J. B. Burton et al., Nat Med. 2008 Aug; 14(8):882–888.
- Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. F. Niessen et al., Nature. 2008 Apr 3;452(7187):654-8.
All prices plus VAT + possible delivery charges